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The accuracy of a 3D face recognition system depends on a correct registration

that aligns the facial surfaces and makes a comparison possible. The best results

obtained so far use a costly one-to-all registration approach, which requires the reg-

istration of each facial surface to all faces in the gallery. We explore the approach

of registering the new facial surface to an average face model (AFM), which auto-

matically establishes correspondence to the pre-registered gallery faces. We propose

a new algorithm for constructing an AFM, and show that it works better than a

recent approach. We inspect thin-plate spline and iterative closest point based regis-

tration schemes under manual or automatic landmark detection prior to registration.

Extending the single-AFM approach, we consider employing category-specific alter-

native AFMs for registration, and evaluate the effect on subsequent classification.

We perform simulations with multiple AFMs that correspond to different clusters in

the face shape space and compare these with gender and morphology based group-

ings. We show that the automatic clustering approach separates the faces into gender

and morphology groups, consistent with the other race effect reported in the psy-

chology literature. Finally, we describe and analyse a regular re-sampling method

that significantly increases the accuracy of registration.

Keywords: 3D face recognition, registration, average face model, ICP, TPS, Procrustes

analysis, automatic landmark localization, other race effect
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I. INTRODUCTION

With the advances in acquisition hardware and 3D recognition algorithms, 3D face recog-

nition has become an important biometric modality. The illumination effects that impair

2D face recognition are alleviated to a large degree when using the surface of the face. Ad-

ditionally, 3D face recognition offers new possibilities of representation when compared to

2D face recognition, and the choice of representation for the surface has a bearing on the

accuracy and the speed of the 3D face recognition algorithm. For instance selecting a depth

map to represent a 3D face makes it possible to use almost all the techniques developed for

2D face recognition, whereas storing true 3D information potentially increases the accuracy.

The speed and accuracy bottleneck in 3D face recognition is in the registration step, which

follows the preprocessing. Test faces need to be aligned to the gallery faces for comparison.

Most of the algorithms start by coarsely aligning the faces, either by their centres of mass [2],

nose tip [3], the eyes [4], or by fitting a plane to the face and aligning it with that of the

camera [5]. Good registration of the images is important for all local similarity measures.

In 3D face classification applications, the most frequently employed registration approach

is the iterative closest point (ICP) algorithm, which establishes a dense correspondence

between two point clouds in a rigid manner [6]. Typically, a test face is registered to each

gallery face separately [7–9], and a point set distance is adopted for classification.

In the work of İrfanoğlu et al., an alternative and fast method was proposed to register

faces [10], where an average face model (AFM) was employed to determine a single point-to-

point correspondence. The gallery faces, previously used in generating the AFM, are already

in dense correspondence with it. Thus, a single ICP is enough to register a test face, which

is much faster for a reasonably sized gallery. This overcomes what has been reported as the

major drawback of ICP [8, 11].

In this paper, we explore and expand AFM-based registration. Our methodology is

summarized in Section II, where we propose an approach that uses one AFM for each facial

category. Section III provides a brief summary of the rigid and nonrigid registration methods

that we use, along with a description of the automatic landmarking algorithm. The novel

AFM construction algorithm is presented in Section IV, where we also describe two different

approaches for creating category-specific AFMs. We report our results on the state-of-the-art

FRGC face database in Section V, and conclude in Section VI.
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II. METHODOLOGY

The goal of this paper is to investigate AFM-based registration for 3D face recognition.

Our setup therefore is a full 3D face recognition system with preprocessing, landmarking,

registration and recognition. This setup is shown in Figure II, which shows the stages of

processing for a new query.

The query image, acquired with the 3D scanner, is first pre-processed to clear it from

imaging artifacts, and a landmarking algorithm is run to detect seven landmarks (eye and

mouth corners, and the nose tip) on the face. The next step is a coarse registration, which

is important for ICP, followed by rigid or non-rigid registration. The AFM (or multiple

AFMs) are registered to the test face, and after the dense correspondence is established, the

points that do not have correspondences in the AFM are removed. This effectively crops

the face area, and produces a set S of 3D points. After the cropping, the depth values on

the test face are resampled from a regular x− y grid. We have used a simple triangle-based

nearest-neighbour interpolation for this purpose [12]. After the dense correspondence, the

point vectors representing the faces are of the same size, and it becomes possible to have a

PCA projection to store much smaller templates.
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Figure II makes it clear that there are many design choices for the complete system,

and each of these choices (manual vs. automatic landmarking, type of coarse registration,

single vs. multiple AFMs, type of AFMs, rigid vs. non-rigid registration, with or without

regular re-sampling, classification with or without PCA projection) has some effect on the

performance. We have designed experiments to resolve each of these issues, and inspected

whether a trade-off is offered by a particular choice, or whether the setting indicates the

superiority of one approach over the other.

The first set of experiments deal with the stage prior to the dense registration. The coarse

registration in ICP and the non-rigid thin-plate spline (TPS) based registration both require

a couple of fiducial points for guidance. We evaluate the effect of errors in landmark detection

by using 3D ground-truth versus automatically located landmarks (Section IIID). This

permits us to analyze the algorithms under realistic assumptions, as automatic landmarking

errors are not uniformly distributed. The details of the ICP and TPS methods are given in

Sections III B and III C, respectively.

For coarse registration in ICP, we test four different methods. Our results indicate that

simple heuristics used in the literature leave room for improvement. Then we propose a

novel AFM construction method, and obtain very good registration results with a single,

generic AFM.

Using a single AFM for registration, and registering separately to each gallery face are

the two extreme approaches. In between these extremes, using a few category-specific AFMs

can be beneficial to accuracy and still be computationally feasible. To test this hypothesis,

we propose two different methods for generating category-specific AFMs. What constitutes

a facial category is an open issue; we contrast an approach based on cognitive justifications

(detailed in Section IV B) with one that is based on clustering on the shape space (Sec-

tion IVC). The cognitive approach allows recognition scenarios to use category information

(e.g. the query for a male face is searched among the males only). But if the category

information is not assumed to be available, it is still possible to register the test face to all

the available AFMs, and take the best registration (one with the smallest distance) as the

outcome. We test both approaches in Section V.

In the last part of the paper, we demonstrate that re-sampling of depth values from a

regular grid improves accuracy significantly, and we justify this improvement by a detailed

analysis. We also show that a good registration ensures that a subspace projection can be
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used with little accuracy decrease.

III. REGISTRATION METHODS

We consider two different registration methods in this paper. In the first method, termed

TPS-based in the experiments section, the test face is aligned to the average face with

the thin-plate spline (TPS) method, and the points not in correspondence with the AFM

are cropped [10]. This method deforms the test face to fit the AFM, and the amount of

deformation is proportional to the number and spread of the landmarks. At the limit of

using all facial points as landmarks, the face deforms into the AFM, losing the discriminative

information completely. However with a few landmarks, corresponding facial structures are

aligned.

In the second method, we use the iterative closest point method to align the test face

with the AFM. ICP is a rigid registration method; hence, the test face is not deformed

at all. TPS-based methods are completely guided by the landmarks, whereas ICP needs

a coarse initialization. Intuitively, ICP will benefit from using category-specific AFMs, as

the rigid registration is not able to cope with shape differences very well. A more similar

average face will ensure that the dense correspondence will be established between points

that have better structural correspondence. The TPS-based method will also benefit from

category-specific AFMs, albeit for another reason: A more similar average face means that

the test surface will be deformed less, and discriminatory information will not be lost.

We review the ICP and TPS algorithms here, along with the Procrustes analysis, the

automatic landmark localization algorithm, and the regular re-sampling that are used by

both.

A. Procrustes Analysis

Procrustes analysis is a statistical tool for the analysis of geometrical shapes [13]. A

shape (or equivalently a figure) P in Rp is represented by l landmarks. Two figures P : l× p

and P ′ : l × p are said to have the same shape, if they are related by a special similarity

transformation:

P ′ = αPΓ + 1lγ
T , (1)
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where the parameters of the similarity transformation are a rotation matrix Γ : p×p, |Γ| = 1,

a translation vector γ : p × 1, a positive scaling factor α, and 1l is a vector of ones. By

using the generalized Procrustes analysis, it is possible to derive a consensus shape for a

collection of figures [14], which is then used in registering new shapes into alignment with

the collection by an affine transformation:

1. Center all shapes Pi:

M =
1

N

N∑
i=1

Pi (2)

Pi = Pi −M (3)

2. Bring the shapes to a common scale.

3. Set the consensus shape Y equal to the first shape P1, as an initialization.

4. For i = 2, 3, . . . , N , rotate Pi to fit Y . Y is re-evaluated after each update of Pi as

Y =
1

i

i∑
j=1

Pj (4)

5. Repeat updating the Pi and Y , while monitoring the residual sum-of-squares:

Sr = N(1− tr(YtY
T
t − Yt−1Y

T
t−1)) (5)

where Yt is the consensus at iteration t, and Yt−1 is the consensus at iteration t − 1.

When Sr is below a threshold (e.g. 0.0001, as suggested by Gower in [14]) stop the

iterations, and output the consensus shape.

B. Iterative Closest Point

In this Section we summarize the ICP procedure as defined in [6].

Define the unit quaternion as a four vector ~qH = [q0q1q2q3]
T , with q0 ≥ 0, and q2

0 + q2
1 +

q2
2 + q2

3 = 1. The 3× 3 rotation matrix H generated by this quaternion is:

H =




q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 + q2

1 − q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

1 − q2
2 − q2

3


 (6)
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Let ~qT = [q4q5q6]
T be a translation vector. Together with qH , they make up the complete

registration state vector ~q = [ ~qH | ~qT ]T . Let P = {~pi} be a data point set to be aligned with

the model point set Y = {~yi}. The two models will have the same number of points, and

ICP will put the points with the same indices into one-to-one correspondence. Denoting

the number of points in each model with N , the objective function minimized by the ICP

procedure is:

f(~q) =
1

N

N∑
i=1

||~yi −H(~qh)~pi − ~qT ||2 (7)

Denoting the centre of mass of the point set P with µp, and that of the model set with µy,

the cross-covariance matrix Σpy is given by:

Σpy =
1

N

N∑
i=1

[(~pi − ~µp)(~yi − ~µy)
T ] (8)

The cyclic components of the matrix Aij = (Σpy − ΣT
py)ij are used to form a column vector

∆ = [A23 A31 A12]
T , which in turn is used to form a symmetric 4× 4 matrix Q(Σpy):

Q(Σpy) =


 tr(Σpy) ∆T

∆ Σpy + ΣT
py − tr(Σpy)I


 (9)

where I is the 3× 3 identity matrix. The optimum rotation is given by the unit eigenvector

~qH = [q0q1q2q3]
T corresponding to the maximum eigenvalue of the matrix Q(Σpy). The

optimum translation vector is given by:

~qT = ~µy −H( ~qH) ~µp (10)

We use ~q(P ) to denote the point set P after the application of the transformation represented

by ~q. The ICP algorithm computes and applies these transformations iteratively. A step-

by-step description of the algorithm follows:

1. Initialize ICP by setting P0 = P , ~q0 = [1, 0, 0, 0, 0, 0, 0]T and k = 0. The registration

is defined relative to P0, which requires a coarse registration. Steps 2-5 are applied

iteratively, until convergence is achieved within a tolerance τ .

2. Compute the closest points: Yk = C(Pk, Y ). The computational cost of this step is

O(NpNy) at the worst case, where Np is the number of points on the registered point

cloud, and Ny is the number of points on the model shape.
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3. Compute the registration: ~qk = Q(P0, Yk). The computational cost is O(Np).

4. Apply the registration: Pk+1 = ~qk(P0). The computational cost is O(Np).

5. Terminate the iteration if the change in the mean square error is below pre-set thresh-

old τ . A heuristic value for τ is a multiple of
√

tr(Σy), where Σx is the covariance

matrix of the model shape, and the square root of its trace is a rough indicator of

model shape size.

In our simulations, the test face acts as the model shape, and the cropped gallery face

is aligned to it. The points of the test scan that are put into one-to-one correspondence

with the model are retained, and the rest are discarded. If the registration is correct, this

procedure automatically gives a good cropping, possibly including hair and clutter removal.

In the rare cases, where a streak of hair extends over the face centre, the registration and

the subsequent classification will be inaccurate.

Previous work on ICP show that a good initialization is necessary for fast convergence

and an accurate end-result. We compare several approaches for the coarse registration.

In our first approach, the point with the greatest depth value is assumed to be the tip of

the nose, and a translation is found to align it to the nose tip of the AFM. This is the

fastest and simplest heuristic used in the literature [15], and we expect it to perform well

with near-frontal faces. In the second approach, we use the manually determined nose tip

(i.e. ground truth) in the coarse alignment. In the third approach, we use the Procrustes

analysis to bring seven manually determined landmark points (inner and outer eye corners,

nose tip, and the mouth corners) into alignment with the average face model. Finally,

we use Procrustes analysis to align automatically determined landmarks with the average

face model. The automatic landmarking errors are not random, and cannot be simulated

by injecting noise to the manually determined landmarks, except by modeling the specific

landmarking procedure.

C. Thin-plate Splines

The TPS model expresses the bending energy of a thin metal plate fixed at certain

points [16]. At the heart of the model is a special surface function:

z(x, y) = −U(r) = −r2 log(r2) (11)
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with r =
√

x2 + y2 equal to the Euclidean distance of point (x, y) to the origin.

For a set of anchor points Pi = (xi, yi), i = 1 . . . n, the thin-plate spline interpolation is

a vector-valued function f(x, y) = [fx(x, y), fy(x, y)] that maps the anchor points to their

specified homologues P ′
i = (x′i, y

′
i), i = 1 . . . n, and specifies a surface which has the least

possible bending, as measured by an integral bending norm. We will give a summarizing

mathematical specification of the model here.

Define rij = |Pi − Pj| to be the distance between the points i and j. Also define the

following matrices:

K =




0 U(r12) . . . U(r1n)

U(r21) 0 . . . U(r2n)

. . . . . . . . . . . .

U(rn1) U(rn2) . . . 0




(12)

P =




1 x1 y1

1 x2 y2

. . . . . . . . .

1 xn yn




(13)

and

L =


 K P

P T O


 (14)

where O is a 3 × 3 matrix of zeros. Let V be a matrix made up of the homologues of the

anchor points:

V =


 x′1 x′2 . . . x′n

y′1 y′2 . . . y′n


 (15)

Define wi and the coefficients a1, ax, and ay as:

L−1(V |0,0,0) = (w1, w2, . . . , wn, a1, ax, ay)
T (16)

The function f(x, y) is defined as:

f(x, y) = a1 + axx + ayy +
n∑

i=1

wiU(|Pi − (x, y)|) (17)

f(x, y) minimizes the nonnegative integral bending norm If over all such interpolants:

If =

∫∫

R2

((
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2
)

dx dy (18)
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The thin-plate spline function f(x, y) is invariant under rotations and translations. It

maps the landmarks Pi to their homologues P ′
i , and defines a smooth interpolation for the

rest of the points on the surface. Pi and P ′
i taken together exactly specify the function

f(x, y), and are therefore crucial to the accuracy of the deformation. In the TPS-based

registration method we use, Pi are the landmarks defined on the average face model, and P ′
i

are the corresponding landmarks of the test scan.

D. Automatic Landmark Localization

Registration of facial images is usually guided by a few fiducial points of established

correspondence (e.g. nose tip, eye and mouth corners). These anchor points have a great

influence on the resulting registration. There are very few completely automatic systems

for face recognition. Most research results are reported on cropped and aligned faces, or the

existence of a few manually located landmarks is assumed. This is apparently necessary,

because the quality of the landmarks can be of greater consequence to the final accuracy

than the classification algorithm itself.

To understand the extent of the dependence to landmarks, we have contrasted manu-

ally obtained ground truth with the results from a recent automatic landmark localization

algorithm [17–19]. In this section, we briefly summarize this algorithm.

The method we employ is a coarse-to-fine approach, based on local feature information.

The inner and outer eye corners, the nose tip, and the mouth corners (7 landmarks) are

localized. These landmarks were selected for the reason that statistical information (rather

than heuristics) can guide the search, as they correspond to distinguishable local features

(whereas the tip of the chin, for instance, does not correspond to a very clear local fea-

ture). During the training phase, 7 × 7 patches are cropped from around each landmark

in the downsampled depth image (60 × 80). These patches are points in a 49-dimensional

space, and their distribution is modeled with a mixture of factor analysers. We employ the

Incremental Mixtures of Factor Analysers (IMoFA) algorithm that automatically tunes the

model complexity to the complexity of the data distribution [20].

The main assumption in factor analysis is that the d−dimensional data x are generated

in a p−dimensional manifold, represented with z, with d >> p. The vectors that span the

lower dimensional manifold are called factors, and the relationship between the factor space
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and the data space is given by

x− µ = Λz + ε (19)

where µ is the data mean, Λ is the factor loading matrix, and ε models the independent

variance at each data dimension. The IMoFA algorithm starts with a simple, one-factor rep-

resentation of the data, and while monitoring a separate validation set, gradually increases

the complexity of the model. The resulting model is a mixture with components that have

different number of factors, thereby modeling clusters with different intrinsic dimensionality.

During the testing phase, this generative model is used to produce likelihoods for each

point on the image. The highest-likelihood locations for each landmark are passed to GOL-

LUM (Gaussian Outlier Localization with Likelihood Margins), a structural correction algo-

rithm that can recover from localization errors [17]. The remaining errors are locations on

the face with characteristics that are statistically similar to the landmark in question, and

they conform to the general face pattern within a margin, as they have passed through struc-

tural correction. For instance the corners of the eyebrows may be selected as eye corners,

or the cleft between the chin and the mouth may be detected as the mouth. The landmark

detection was performed on the 3D depth map, which is found to be less informative than

2D images, but much more robust to illumination changes [18].

The coarse localization is complemented with a fine-level search on the original 480×640

range image. Only a relatively small (41 × 41) area around the coarsely located landmark

is searched. The first and second depth gradients are estimated in vertical and horizontal

directions, and convolved with kernels learned during the training stage. Each kernel is a

map with values (±1), and the cascade of kernels is constructed incrementally to produce the

maximum output for the desired landmark shape. These kernel outputs are combined, and

the highest response is taken as an indicator of the presence of the sought landmark. This

approach is computationally simple, fast, and improves the quality of the coarse landmarks.

See [19] for more details on the automatic landmarking procedure.

E. Regular Re-sampling

The sampling of 3D information can be a cause of error in the comparison stage. We have

used a simple triangle-based nearest-neighbour interpolation for regular re-sampling of depth

information from the aligned models [12]. The method relies on a Delaunay tesellation of the
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original data, such that none of the original data points are contained in any circumspheres of

the simplices of the tesellation. Then, for each x and y position of the regular grid, the nearest

vertex in the tesellation is located and its depth value is used. The grid boundaries are

derived from the generic cropped AFM, at the resolution of the range sensor. Consequently,

the effect on the AFM is that the points are slightly moved to conform with a regular

x− y grid. We will provide a graphical intuition on why regular re-sampling is beneficial in

Section V.

IV. AVERAGE FACE MODELS

In [10], a method for generating the AFM was described. In this method, the training

faces are manually landmarked, and the TPS method is used to register all the training

faces to a consensus shape. One of the faces is selected to be the AFM candidate, and from

each of its vertices, distances to each other training face are computed. If a vertex has

no corresponding point in every training face closer than a threshold value, that vertex is

trimmed. The trimmed vertices are usually the ones at the boundaries of the face area. The

remaining vertices, and their corresponding closest points for each training face are averaged

to create the final AFM. This procedure creates a very smooth facial surface, as shown in

Figure IV.

In this Section, we describe a novel method of generating the AFM, which is experimen-

tally determined to produce better results. We also describe two methods of generating
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category-specific AFMs, a cognitive method that is based on the other-race effect, and a

clustering approach that is based on clustering in the shape space, respectively.

A. Construction of an AFM

Using a set of landmarked training faces, we generate an AFM with the following proce-

dure:

• Using Procrustes analysis, a consensus landmark distribution is found on the training

set.

• The landmarks of the consensus shape are rectified to present a fully frontal face,

centered at the origin of the 3D coordinate system. This heuristic is used to facilitate

the use of the transformed range image in later stages. Rectification is achieved by

rotating the face so that the eye and mouth planes, as found by fitting surfaces to the

appropriate landmarks, are parallel to the x-axis and the z-axis as much as possible.

• TPS deformation is computed for the training faces, which warps the landmarks of

each face to the consensus shape perfectly, and interpolates the rest of the points.

• The depth values of the interpolated face are re-sampled from a regular x-y grid. This

ensures that all added faces have points with overlapping x and y values, and the depth

values are given for matching points. For the simple range image representation, this

extra offline computation leads to much faster online model comparison.

• A cropping mask is defined to encompass the facial area, and faces are cropped before

they are added to the average face model. For creating this mask, we calculate the

maximum distance from the nose tip to any landmark in the consensus shape. We

add a ten per cent margin to this distance, and retain all points closer than this value

to the nose.

• After all the training faces are added, depth values are simply averaged.

Samples of AFMs generated with this method can be seen in Figure VF. Any irregularity

in the surfaces is due to poor pre-processing of the depth data. The database we use was

collected with a laser sensor that typically generates holes (especially at the eyes and the
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mouth) or other artifacts. The pre-processing sometimes falls short of repairing larger errors.

Since the landmark locations are retained, the facial characteristics are not smoothed out

even when a large number of samples is used for AFM generation. Generating AFMs with

a training set three times bigger than the original set resulted in very similar AFMs, with

an average of 0.4 (±0.3) mm. point-to-point distance to the old AFMs.

B. Cognitive Approach to Multiple AFM Generation

When humans see faces, they perceive each face individually, and not merely as specimens

of a generic object category [21]. The mechanism that operates for enhanced within-category

recognition is what we can call expertise of that category. Tong et al. remark that expertise-

related visual judgements involve enhanced within-category discrimination, as opposed to

between-category discrimination, the former requiring a magnification of differences in sim-

ilar objects, and the latter calling for a neglecting of differences to group similar items

together [22].

People have great difficulty recognizing faces of another race if they are not exposed to

them for prolonged periods. This phenomenon is termed the other race effect. In the light of

Tong et al.’s experiments, it seems reasonable that during the acquisition of face expertise,

the transformations learned by the visual cortex serve to magnify the differences between

individual faces, as indicated by the statistical distribution of the encountered facial features.

By this reasoning, the other race effect suggests that different face morphologies exhibit

different statistical distributions of distinguishing characteristics. Valentine has previously

employed principal component analysis to find different subspace projections and obtained

results that mimick the other race effect [23].

We stress that our aim is not to detect the race of a person; therefore, we use the

term morphology to denote similar facial surface morphology characteristics. Based on the

cognitive cues, we predict better recognition rates if the faces are clustered into morphological

or gender groups that exhibit greater intra-group similarity and the discriminative features

are learned within each group separately. This is not trivially true for all pattern recognition

applications, as the grouping reduces the number of training samples and consequently runs

the risk of impairing learning conditions. In this approach, the gender and morphology were

determined manually, by visual inspection of the faces.
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C. Clustering Approach to Multiple AFM Generation

If our hypothesis of meta-classification is correct, we expect morphology and gender to

be discriminating dimensions of the face space. However, we do not wish to categorize

faces into races explicitly, as this approach has ethical consequences. Can the gender and

race determination during the training (and possibly, in the testing) stage be evaded? For

our simulation purposes, we have roughly assigned facial images into African, Asian and

Caucasian morphological face classes. The other-race effect suggests that racial-morphology

based clusters exist in the face space, and an unsupervised clustering method can recover

those clusters, among other meaningful structure. Thus, it is not necessary to recover the

race and gender of a person; the clustering will hopefully provide us with a useful set of

average faces to serve in meta-classification with increased discrimination within clusters.

By performing a shape space based clustering, we will also answer an interesting ques-

tion: Are gender or racial morphology major factors in determining the face shape? The

intuitive answer is affirmative, but the clustering provides us with an explicit way to test

this hypothesis.

We propose to take a straightforward race- and gender-blind clustering approach with

the k-means algorithm. The clustering is performed on the aligned coordinates of seven

facial landmarks. We specify the number of clusters for the shapes, and initialize the cluster

consensus shapes by random selection from the training samples. At each iteration, we align

the training samples to the consensus shapes of the clusters via Procrustes analysis, and

assign each sample to the cluster with minimum average distance to the cluster consensus.

We then re-estimate cluster consensus shapes from the samples assigned to the cluster, and

iterate until the total distance stabilizes. The number of clusters was set to six to allow

comparison with the cognitive approach.

The clustering gives us a number of cluster consensus shapes, and assigns each training

face to one of these clusters, without ensuring that all morphological categories are repre-

sented. We apply our AFM generation algorithm to these reduced training sets separately,

and obtain one AFM for each cluster. These models can be seen in Section VG.
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V. EXPERIMENTS

A. The 3D Face Database

We use the FRGC 2D-3D ver.1 face database in our experiments [24]. The database

contains 943 near-frontal depth images from 275 subjects, stored in a point cloud represen-

tation. The laser scanner that was used to collect the database samples points from the

surface of the face in regular intervals. Although the number of points per face can be

different according to distance to the scanner at the time of acquisition, the coordinates of

the points are given in a proper metric scale.

We use images from 195 subjects, with one training face in the gallery and 1-4 test faces

(for a total of 659 test faces). This experimental setup is used in [33], and we chose to use

the same setup to allow a direct comparison with a host of techniques. Subjects with only a

single image in the dataset, and images with incorrect texture-depth correspondence are not

used. We only work with 3D information for landmarking and registration; 2D is not used

at all. We design a number of experiments to answer various questions. Each subsection

deals with a particular question, and reports relevant simulation results. The overall system

has many dimensions, ruling out a factorial experimentation protocol.

For each method, we run a recognition experiment and a verification experiment. For

the recognition experiments, the rank-1 recognition rate (R1) is reported. The point set

difference (PSD) is used as a distance metric for recognition. In the verification experiments,

each of the 659 test faces is used for one genuine and 194 false claims. Thus, the number of

false claims is two orders of magnitude higher. The equal error rate (EER), for which the

false acceptance rate is equal to the false rejection rate, is reported under these conditions.

B. Preprocessing

The preprocessing of 3D information consists of several steps. Missing points and holes

can be filled by local interpolation or by making use of facial symmetry [25]. However, it

is a well-known fact that faces are not truly symmetrical. Gaussian smoothing and linear

interpolation are used to eliminate irregularities in both texture and range images [2, 3, 26].

Background clutter and hair artifacts are usually manually removed in the literature [2, 3,

27], whereas in our approach, the cropping of the face area is fully automatic.
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If there is excessive acquisition noise in a dataset, it will be difficult to assess the accuracy

of algorithms, as the deterioration due to noise can be more pronounced than improvement

due to a better algorithm. Datasets are frequently cleared of noisy samples [26, 28]. Mean

and median filters are also employed to reduce local noise [5, 26]. The preprocessing used

in this paper includes a 9× 9 mean and a 9× 9 median filter applied in succession, followed

by linear interpolation for filling the gaps. The filter sizes are experimentally determined,

and not optimized for actual shape sizes.

C. Automatic Landmarking

Figure V C shows the accuracy of the automatic landmarking procedure in terms of

millimeter-distance from the manually obtained ground truth. The evaluation considers one

to ten candidates for each landmark location, as indicated by the x-axis. The curves begin

at the average distance for the best candidate, and decrease as better locations are found

among the candidates. The manually annotated ground-truth is accurate up to several

millimeters, and a lower distance to the ground truth indicates a better localization. The

quality of landmarking also depends on the type of landmark; the nose tip is easier to find

in 3D as expected [29–32]. The reader is referred to [19] for more detail on the performance

of the algorithm.

D. Classification

The most natural way of classification for point sets in dense correspondence is using the

point set distance (PSD) measure. Since all points are in full correspondence, we have two

3D vectors of the same length, and PSD is simply the sum of all Euclidean distances of the

points in the query and gallery faces:

arg min
j

∑
i∈S

||xi − ai,j|| (20)

where xi is the ith point of the test scan, and ai,j is the ith point of the jth gallery sample.

S denotes the set of points put into dense correspondence.

In the cases where we employ the regular re-sampling, the x and y coordinates of these

points are the same across all samples, and therefore need not be taken into account. The
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3D PSD becomes equivalent to a L1 distance computed on the depth values, and for clas-

sification, the smallest L1 distance between gallery images and the test images is sought to

indicate the correct class j:

arg min
j

∑
i∈S

|xz
i − az

i,j| (21)

where xz
i is the depth value of the ith point of the test scan, and az

i,j is the depth value of

the ith point of the jth gallery sample.

For authentication, a threshold τ is used to validate the claimed identity j:

∑
i∈S

|zi − ai,j| < τ (22)

and τ can be used to tune a trade-off between false acceptance rate (FAR) and false rejection

rate (FRR). The equal error rate (EER) is the reported error rate for the particular τ for

which FAR and FRR are equal on the test set. While it makes sense to use one-to-one

ICP for the authentication setting in practice, obtaining a lower EER by just changing the

AFM set is still indicative of a better registration, and therefore it is reported for some of

our simulations. Furthermore, by storing only the projection coefficients for gallery faces,

the storage requirement can be greatly reduced (for instance, instead of about 32.000 3D
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points, a 50-dimensional vector can be stored per subject). In this case, the subject-specific

3D model is not available for registration, and an AFM will be used for authentication.

E. Coarse registration

Table ?? shows the effect of coarse alignment methods on ICP-based registration. As

we have suspected, the nose-tip heuristic performs the worst. Automatic localization of

seven landmarks and using Procrustes alignment works better than the nose-tip heuristic.

For ICP, using the nose ground truth works well in this dataset, because the faces we deal

with are mostly upright and frontal. Ideally three landmarks should be used to accomodate

greater pose differences in 3D. Finally, the seven manual landmarks with the Procrustes

analysis give us an upper-bound on the performance of the ICP-PSD method.

We have also contrasted our AFM construction method with the method of Irfanoğlu et

al. [10] on ICP. Manual landmarks were used, and initialization was by Procrustes alignment.

With their smoother AFM, a rank-1 recognition rate of 86.34 was achieved, as opposed to

our 92.11 per cent. Similarly, the EER was higher with their AFM by more than two per

cent.

F. Meta-classification

Does meta-classification and more specialized individual experts increase discrimination?

We have tested this hypothesis by employing the average faces that are generated from

groups of training faces. We have grouped the training samples for gender and morphology,

and generated average face models (AFM) for each group. Figure VF shows range images

obtained for the average face, for male and female averages, for three morphological group

averages (roughly Caucasian, Asian, and African), and for all combinations, respectively.

The morphology does not correspond to a clear-cut distinction. The morphological group

of a given face will be determined by its proximity to the average face of the group.

In Table ?? the authentication experiment results with or without specific average faces

are shown for TPS-based registration. We have supplied both the generic-AFM based system

and the specific-AFM based system with the categorical information, which improves the

accuracy by itself. However, any improvement in the specific system with regards to the
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Generic Caucasian Asian African

Male Caucasian Male Asian Male African Male

Female Caucasian Female Asian Female African Female

corresponding generic system is strictly due to better registration. We have computed

distances between the test face and the gallery faces with an L1 distance metric, and trimmed

the worst two per cent of the correspondences. The EER without any use of categorical

information is 20.10 per cent. The results reported under these conditions show that specific

AFM usage is beneficial in this case. We stress that the main purpose of the PSD is to

evaluate the effect of AFM usage; the EER is generally too high for these experiments

because of deformations in the registration, but the gain obtained by introducing specific

models is more pronounced in comparison to ICP-based experiments.

The point set distance after aligning the face to the female and male averages can be

used in gender classification. This simple method works with 80 per cent accuracy.
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G. Shape Space Clustering

The shape-space method divides the training samples into clusters of similar size. The

number of clusters should be small to have a maximal computational gain, and can be

increased as long as the accuracy increase is considered worth the computational cost. How-

ever, the number of training samples per cluster should be sufficiently high (depending on

the quality of the range data and pre-processing), else the constructed AFM will be poor. We

have specified six clusters, to allow a comparison with the full morphology-gender combina-

tion case, and ran our algorithm on the training part of the FRGC ver.1 dataset. Figure VG

shows the cluster means.

Table ?? shows recognition rates for ICP and TPS based systems with manual or auto-

matic landmarks. The first row shows the results obtained with a single generic AFM. The

next three rows show results with gender-, morphology-, and gender + morphology-based

specific AFMs. The results for the last row are obtained with six shape-space derived clus-

ters. For this last case, the registration does not benefit from the injection of categorical

information, and each test sample is compared with all the training samples. The best result

is obtained with shape space derived specific AFM and ICP (93.78 per cent). As a baseline

experiment, we have also tested one-to-all ICP, where each test face is registered to each

gallery face for distance computation. With manual landmarks, we have obtained 89.07

per cent rank 1 recognition rate, which further demonstrates the usefulness of AFM-based

registration.
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We have also tested adding the previously excluded single-image subjects to the gallery.

This decreases the accuracy of all the recognition methods, as the 195-class problem becomes

a 275-class problem. The ICP method (with manual landmarks and generic AFM) suffers

2.6 per cent accuracy loss with the enriched gallery.

Our cognitively motivated subspace hypothesis is confirmed, if the shape space clustering

automatically creates clusters with a dominant gender, or puts samples from one race into

a single group1. This is what more or less happens, and we do have clusters dominant in a

single gender or a single morphology. This effect is more pronounced when we increase the

size of the training set by 371 images from the FRGC ver.2 dataset. Figure V G shows the

distribution of morphology and gender in each group as pie charts.

Males

Females

Caucasians

Asians

Africans
Males

Females

Caucasians

Asians

Africans

Males

Females

Caucasians

AsiansAfricans
Males

Females
Caucasians

AsiansAfricans

Males

Females

Caucasians

AsiansAfricans
Males

Females
Caucasians

Asians

1 Currently available 3D face datasets do not have a balanced morphology-gender distribution, where the
cognitive hypothesis can be tested more thoroughly.
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H. Regular Re-sampling and Subspace Projection

In this section we apply the Eigenface method to 3D range images registered to different

AFMs with ICP. A projection from the space of 3D points can only be computed if the

number of points is the same for each query and gallery face. Our method ensures that this

is indeed the case. If the accuracy loss after the projection is small, this means that the

registration was successful, and the selected subspace dimensionality is sufficient to capture

the discriminative dimensions of variation.

The depth values of the range images are not sampled regularly from an x− y grid, and

so far we have computed 3D point distances, instead of a simpler 1D comparison based on

the depth. Since we deal with aligned shapes in dense correspondence, applying a regular

re-sampling will make it possible to discard two dimensions from the point cloud, making the

subsequent comparison and subspace projection easier. We will also show that the regular

re-sampling helps classification by making the distance measurement more accurate.

The dimensionality of the subspace is determined heuristically. We set the number of

eigenvectors so that at least 95 per cent of the variance is accounted for. The Eigenface

method is contrasted with the PSD method, which, due to regular re-sampling, uses the

sum of squared distances of depth values only.

The regular re-sampling lightens the computational burden of comparing the test sample

with gallery images. Furthermore, the computed projection allows us to store much smaller

gallery faces. For example in experiments with the generic AFM, roughly 32.000-dimensional

face vectors are represented with 50-dimensional vectors after the subspace projection. This

means that the comparison with gallery faces will be much faster. Table ?? shows that

the accuracy loss due to subspace projection does not exceed one per cent, if there are

sufficient training samples. For the gender & morphology combination, the training set is

very limited, and consequently there are only 15 eigenvectors with non-zero eigenvalues in

one of the groups (henceforth we denote the number of eigenvectors with p). This number is

too small to represent the facial variation, and the accuracy decrease is about three per cent.

The morphology results were obtained with p = 33, and the gender results with p = 49.

For the results in this section, we have grouped African faces and Caucasian faces into a

single category, as we had too few samples from the African category (i.e. two clusters for

morphology, and four clusters for gender & morphology runs).
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Before analysing the results, we will give some additional experimental results reported

on this dataset. In [33], Gökberk et al. use the same experimental protocol as ours to

compare a wealth of classification methods: Point set difference, non-negative matrix fac-

torization (NMF) and independent component analysis (ICA) coefficients for point clouds,

DCT, DFT, PCA, LDA, and ICA projections on depth images, shape indices, mean and

principal curvatures, 3D voxel DFT coefficients and 2D Gabor wavelet coefficients. Manually

annotated landmark positions were used for an AFM-based ICP registration (with an AFM

generated with the method of Irfanoğlu et al. [10]). The best classification results are based

on shape indices (90.06 per cent), principal directions (91.88 per cent) and surface normals

(89.07 per cent). The best accuracy after classifier fusion is 93.63 per cent, obtained with

modified plurality voting [33].

For projection-based methods, the input dimensionality needs to be fixed. Subsequently,

PCA is not directly applicable in 3D prior to the cropping (which in turn uses the alignment),

as we have different number of 3D points per subject. It is possible to do a PCA on the

range image without 3D registration, by using the landmarks to define a bounding box on

the range image. In [34], this approach is used, where manual landmarking is followed by

re-scaling of the face area to a fixed bounding box. By using a cropping mask, the effect

of boundaries were reduced, and a PCA transformation was used to compute Mahalanobis

cosine distance for classification. With an experimental setup on the FRGC ver.1 dataset

very similar to ours (198 training and 670 probe images were used, subjects with a single

image are excluded), the reported accuracy is 87.04 per cent.

The ICP results reported in Table ?? are much better than the results reported in Ta-

ble ??, and the results reported in the literature. With the generic AFM and the automatic

landmarks (i.e. the fully automatic system) the PSD method without re-sampling has a

rank-1 recognition rate of 87.86 per cent, whereas after re-sampling, it has 98.03 per cent

accuracy. The reason is graphically depicted in Figure VH. The facial surface (shown sym-

bolically as a dotted line in the figure) is irregularly sampled by the laser scanner (two points

per facial surface, shown with black triangles). The ICP registration brings these surfaces

into alignment by global rigid matching. Hence, the corresponding points may not be in

close alignment locally, although the sum of all displacement vectors is at a local minimum.

Regular re-sampling produces depth values at regular x and y intervals (shown with

black square points). These points give a more realistic indication of the distance between
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the two surfaces, unless the absolute depth gradient is very high. In the latter case, small

displacements in the x − y plane will result in big changes in depth, making an irregular,

point-to-point 3D comparison the logical choice. However, the facial surface as represented

by a range image has few points with sharp depth changes (i.e. the nose ridge, mouth and

eye corners, and the face boundary). Our cropping procedure eliminates the face boundary,

and greatly reduces the number of these points. Consequently, the regular re-sampling is

indispensable for AFM-based registration.

When we inspect the samples that are classified correctly after re-sampling, but not be-

fore, we see that the error due to point-irregularities is large enough to disturb classification.

Figure VH depicts the mean distance differences between the correct class and the incorrect

class for these samples. For samples with irregular point distributions, the point-to-point

distance terms have a large variance, and this error is distributed all over the face as shown

with light colour. However, for regular re-sampled point distributions, large areas on the

face have very low error, as shown with dark colour. As we predicted, error in re-sampled

faces peaks for locations with greater depth gradient, and especially for the nose ridge. Since

the nose ridge is a relatively small area of the face, increased error here is compensated by

decreased error on the larger facial surfaces. Furthermore, the nose ridge error is increased

for competing classes as well. Consequently, the nose area becomes useful in discrimina-

tion, even though sometimes it is the highest error area during registration with the correct

gallery sample.

The re-sampling does not have a high computational cost, as the points are already

ordered in the range image. For one-to-all ICP, it is possible to perform a similar re-

sampling. However, if the gallery faces are not in alignment, the re-sampling has to be

performed online for each gallery face separately. Another benefit of using the AFM is that

the re-sampling is just performed once for each test face, and the computation is offline for

gallery samples.
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When we experiment with race and gender information, we make sure that for each

comparison, the training and test samples are registered to the same AFM. For example,

in the simulations where the gender is available, we register a male test face with the male

AFM before comparing it to the male faces in the gallery, but we use the female AFM for

comparisons with female gallery faces. Thus, we have two options when using categorical

AFMs: We can either inject ground truth information (for instance by setting intra-group

distances to infinity), or we can let the system decide on the face category by picking the

match with the smallest distance, like we do for shape space clustering based categories. The

results reported in Table ?? are obtained with the latter method. Our simulations show that

injecting the ground truth increases the accuracy only by 0.5–1 per cent. This means that

for this dataset, cross-gender and cross-morphology errors are relatively rare, and we obtain

categorical information with great accuracy by simply selecting the best gallery face.

Another issue we have considered was the number of points in different AFMs. The

AFM for the females contains roughly 20 per cent fewer points that the AFM for the males.

In our first experiments, we have used a single mask to crop faces in all categories. This

procedure gives faces with equal numbers of points. The results of Table ?? are obtained

by allowing each category to have a different number of points after cropping, and by nor-
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malizing the Euclidean distances accordingly. For the gender case, this procedure increased

the recognition accuracy by a half per cent.

VI. CONCLUSIONS

For real-time 3D face recognition, the computational requirements of the algorithms must

be taken into consideration. We have evaluated ICP and TPS based registration of 3D faces

under automatic and manual landmarking. The much slower ICP method is only viable if

the registration is speeded up through the use of average face models. We have proposed

an AFM-based method for this purpose, and demonstrated its usefulness. By extending

the paradigm to multiple AFMs, we have proposed two approaches for generating category-

specific AFMs and contrasted these. Finally, we have proposed a regular re-sampling step

that increases the accuracy and speed of classification.

Our results show that ICP is superior to the faster TPS based method in accuracy.

Simulations with improved non-rigid approaches have shown that these methods depend

heavily on the accuracy of landmarks, and also require a greater number of those [19].

However, the beneficial effect from specific AFM use is more evident in TPS methods that

use either automatic or manual landmarks.

We propose a cognitively based approach and a clustering approach to generating specific

AFMs. Clustering on shape space produces good AFMs, increases the accuracy of registra-

tion, but also reveals natural groups depending on morphology and gender in the face space.

This is interesting, as it provides an indication that the other race effect has a physical basis

even for the 3D information contained in a face.

The reasoning behind multiple AFM usage is that categorical information can act as a

filter to reduce the candidates for recognition, and an average face more similar to the test

face can ensure a better registration. In the case that cross-gender and cross-morphology

confusions are relatively rare, the injection of categorical information does not increase the

accuracy.

Another observation regarding multiple AFMs is that specific AFM models have different

numbers of points. A male face usually contains 20 per cent more points than a female face,

simply because female human faces are typically smaller. When we align a face to the female

and the male AFMs, the distribution of distances is different in the centre of the face and at
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the periphery. Using a smaller AFM (the one for the females, or Asians, for instance) will

effectively remove the points close to the periphery from the distance calculation. This can

be an issue for one-to-all ICP approaches as well.

Our experimental results have also confirmed that ICP is sensitive to initialization, and

automatic landmarking as a pre-processing step is beneficial to ICP. Manual inspection

showed that none of the test cases had gross registration deficiencies in the fully automatic

method. The nose-tip heuristic may be useful in frontal faces, but the hair, clothing and

sometimes the chin can be erroneously detected as the nose tip. The error due to incorrect

nose localization can be gauged by looking at the results of the simulations that use the

ground-truth for the nose in initialization. We should also keep in mind that the database

we use is made up of near-frontal faces. The nose-tip heuristic will perform worse in other

pose settings. On the other hand, our results confirm that the nose tip is more important

for the registration than any other landmark we have used.

The re-sampling procedure we propose is based on the relative flatness of the facial

surface and the fact that cropping eliminates the facial boundary, where the cheeks can

produce a sharp depth gradient in the frontal view. With this method, the error due to

irregular sampling by the laser scanner is compensated, and there is a significant increase

in the accuracy. As a result of AFM based registration, the cropped models have the same

number of points, and these points are matched on the depth map after re-sampling. This

helps us in projecting the depth map to a much lower dimensional manifold via PCA, while

retaining a high recognition accuracy. We obtain the best results with ICP and shape space

clustered AFMs, and our reported results with re-sampling are significantly better than

results reported in the literature without re-sampling for the same experimental protocol.
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